PMT

PH1

0	Juestic	n	Marking details	Marks Available	
1	(a)	(i) (ii)	[directly] proportional/ I α V (1), provided the temperature remains constant / all physical factors remain constant (1) V = IR only no marks	2 1	
	(b)	(ii)	$\frac{250}{200} = 265 \text{ [W] allow e.c.f. from (b)(i)}$	3	
		(iv)	$\frac{1}{66.7(1)} = \frac{1}{200} + \frac{1}{R_2} (1)$ $R_2 = 100 [\Omega] (1)$ $R_2 (1) \text{ either reference to } \frac{V^2}{R} \text{ so lower } R / \text{ same V across lower R}$ or reference to $I^2 R$ so greater <i>I</i> or reference to <i>IV</i> so <i>I</i> increased [for constant <i>V</i>] or correct calculation of $R_2 (1)$	3	
		(v)	$\frac{230}{66.7} = 3.5 \text{ [A] allow e.c.f. from (b)(iii)}$ Question 1 total	1 [13]	
2	(a)	(i) (ii)	 Diagram to include Correct electric circuit with ohmmeter or power supply with ammeter + voltmeter with correct symbols and positioning (1) Method of heating shown (1) Method of recording temperature shown (1) Linear [or approximately linear] graph with positive gradient (1) and positive intercept on <i>R</i> axis (1). 	3 2	
	(b)	(i) (ii)	Conducting / delocalised / free electrons (1) collide (1) with metal lattice / atoms / ions (1) [not with other free electrons] The greater the temperature the greater the vibrational energy of the lattice / metal ions (1) producing a greater chance [or rate] of collisions/ collisions more often / greater frequency of collisions (1) [not harder].	3	
			Question 2 total	[10]	

Question			Marking details	Marks Available
3	(a)	(i) (ii)	Rate of change of velocity or $\frac{v-u}{t}$ or change in velocity / time taken ($u = 0$) (1) [or by impl.] Acceleration = $\frac{6.0}{0.8} = 7.5$ m s ⁻² (1) UNIT mark	1 2
	(b)		After release there are no [horizontal] forces acting [on the trolley] (1) so it travels with constant speed [to the left] (1). When Nigel catches it there is a force on the trolley to the right / towards Nigel (1) which causes the trolley to decelerate/ slow down/ stop moving [to rest] (1)	4
			Question 3 total	[7]
4	(a)		$E_{\rm P} = (7.0 \times 10^6 \times 1000)(1) \times 9.81 \times 600 (1) [= 4.1 \times 10^{13}]$ 1 st mark – use of density equation to get 7.0 x 10 ⁹ kg 2 nd mark – use of <i>mgh</i>	2
	(b)		Energy available per second = $0.9 \times 4.1 \times 10^{13}$ [= 3.6×10^{13}] J (1) allow e.c.f. from (a) Time = $\frac{3.6 \times 10^{13}}{6 \times 300 \times 10^{6}$ (1)} [= 2×10^{4} [s] / 5.6 [hour]] (1)	3
	(c)	(i) (ii)	$\frac{7.0 \times 10^9}{2 \times 10^4 \text{ e.c.f.}} = 3.5 \times 10^5 \text{ [kg s}^{-1}\text{] allow e.c.f from (a) and (b)}$ $E_k \text{ per second } [= \frac{1}{2} \times 3.5 \times 10^5 \times 20^2 \text{]}$	1
		(iii)	$= 7 \times 10^{7} [\text{J s}^{-1}] \text{ allow e.c.f from (c)(i)}$ Energy wasted per second $= \frac{10\% \times 4 \times 10^{13} \text{ J}}{2 \times 10^{4} \text{ s}} (1) \text{ allow e.c.f. from (a)}$	1
			and (b) [or equiv, or by impl.] = 2×10^8 [W] (1)	2
		(iv)	% lost in $E_{\rm k} = \frac{7 \times 10^7}{2 \times 10^8}$ [e.c.f. on (ii) and (iii)] = 35%	1
		(v)	Any sensible answer, e.g. [k.e. in] water turbulence, [work against] friction in turbines, drag/friction between water and pipes not just heat or sound or refilling the high level reservoir.	1
			Question 4 Total	[11]

Question			Marking details	Marks Available	
5	(a)	(i) (ii)	Electron Negative charges repelled [by rod] (1) and move from A to B/ to the	1	
		(iii)	right (1) leaving A with a net positive charge (1) Diagram with A shown as positive and B as negative (1) and the charges shown on the sides of the sphere which are nearly	3	
			touching.(1)	2	
	(b)	(i) (ii)	$[1.6 \times 10^{-19} \times 300 \times 10^{9} =] 4.8 \times 10^{-8} \text{ C UNIT mark}$ $I = \frac{4.8 \times 10^{-8}}{20 \times 10^{-12}} (1) = 2.4 \times 10^{3} \text{ [A] (1) allow e.c.f from (b)(i)}$	1	
			20×10^{-12} (1) 2.4 × 10 [A] (1) anow e.e.t nom (0)(1)	2	
			Question 5 Total	[9]	
6	(a)	(i)	$\frac{[\text{Total}] \text{ distance}}{\text{time}} \text{ not rate of change of distance}$		
		(ii)	time displacement	1	
		(11)	$\frac{\text{displacement}}{\text{time}}$ not rate of change of displacement	1	
	(b)	(i)	$\frac{6.0}{25} = 0.24 [\text{ m s}^{-1}]$	1	
		(ii)	$\sqrt{3.5^2 + 2.5^2}(1)$	1	
			$\frac{\sqrt{3.5^2 + 2.5^2}(1)}{25} = 0.17 \text{ [m s}^{-1}\text{]}(1)$	2	
	(c)	(i)	E = IVt used [i.e. relevant numbers substituted] (1) Energy stored = 2.5 × (60 × 60) or 1.25 x 2 x (60 x 60) (1) × 15.0 i.e.		
		()	conversion to seconds $E = 1.35 \times 10^5$ [J] or 37.5 Watt hours (1) Watt hours unit needed	3	
		(ii)	$\frac{1.35 \times 10^5}{30}$ (1) = 4.5 × 10 ³ s [= 1 ¹ / ₄ hour] (1) allow e.c.f. from (c)(i)	2	
	(d)	(i)	Power = $\frac{\text{Work [or energy]}}{\text{time}} = \frac{F \times d}{t}$		
		(;;)	Identification of work as $F \times d$ in context of power equation (1) Identification of velocity as d/t (1) $9 = F \times 0.24$ (1) [or by impl. – use of 0.24 m s ⁻¹ , i.e. identification of	2	
		(ii)	$y = F \times 0.24$ (1) [of by hip]. – use of 0.24 m s ⁻ , i.e. identification of relevant v] allow e.c.f. from (b)(i) F = 37.5 [N] (1)	2	
			Question 6 Total	[14]	

	Questic	on	Marking detailsRelevant pairs of values chosen (1)[e.g. 10 m s ⁻¹ \rightarrow 8 m and 20 m s ⁻¹ \rightarrow 32 m]Method / strategy, e.g compare $\frac{\text{distance}}{\text{speed}^2}$ for the pairs of values. (1)Conclusion clearly linked to calculation (1)Allow e.c.f for values of pairs if marking points 2 and 3 completed correctly.	Marks Available
7	(a)			
	(b)	(i) (ii)	Identification of relevant equation: e.g. $v^2 = u^2 + 2ax$ (1) Identification of x = 18 m (1) deceleration = 6.3 [m s ⁻²] or a = -6.3 [m s ⁻²] (1) $F = 800 \times 6.3 = 5000$ [N] allow e.c.f. from (b)(i)	3 1
	(c)		Reaction time is independent of speed / doesn't change (1) Then $v \propto d$ [from $d = vt$] (1)	2
	(d)	(i) (ii)	21 + 72 = 93 [m] No change to thinking distance (1) [Reduced acc/deceleration would] increase braking distance (1)	1 2
	(e)		Time required = $\frac{\text{total distance}}{\text{speed}} = \frac{10}{50} [= 0.2 \text{ hour}] (1)$ Time for first 6.0 km = $\frac{6.0}{80} [= 0.075 \text{ hour}] (1)$ remaining time = $0.2 - 0.075 = 0.125$ hour (1) 4	
			Speed for remaining 4 km = $\frac{4}{0.125}$ = 32 [km / h] or 8.9 [m s ⁻¹] (1)	4
			Question 7 Total	[16]