PH1

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 1 \& (a)
(b) \& \begin{tabular}{l}
(i) \\
(ii) \\
(i) \\
(ii) \\
(iii) \\
(iv) \\
(v)
\end{tabular} \& \begin{tabular}{l}
[For a metallic conductor] the potential difference and current are [directly] proportional/ \(\mathrm{I} \alpha \mathrm{V}(1)\), provided the temperature remains constant / all physical factors remain constant (1) \\
\(\mathrm{V}=\mathrm{IR}\) only no marks \\
It is constant / stays the same /increases as the temperature increases
\[
\begin{aligned}
\& A=1.5(3) \times 10^{-8}\left[\mathrm{~m}^{2}\right](1) \\
\& R=\frac{\rho l}{A}=\frac{95 \times 10^{-8} \times 3.2}{1.5(3) \times 10^{-8}}(1)=199 \quad[\Omega](1) \\
\& \frac{230^{2}}{200}=265[\mathrm{~W}] \text { allow e.c.f. from (b)(i) } \\
\& \frac{1}{66.7(1)}=\frac{1}{200}+\frac{1}{R_{2}}(1) \\
\& R_{2}=100[\Omega](1)
\end{aligned}
\] \\
\(R_{2}(1)\) either reference to \(\frac{V^{2}}{R}\) so lower \(R\) / same V across lower R or reference to \(I^{2} R\) so greater \(I\) or reference to \(I V\) so \(I\) increased [for constant \(V\)] or correct calculation of \(R_{2}(1)\)
\[
\frac{230}{66.7}=3.5[\mathrm{~A}] \text { allow e.c.f. from (b)(iii) }
\] \\
Question 1 total
\end{tabular} \& \begin{tabular}{l}
2
1 \\
3 \\
1 \\
3 \\
2 \\
1 \\
[13]
\end{tabular} \\
\hline 2 \& (a)

(b) \& (i) \& \begin{tabular}{l}
Diagram to include

- Correct electric circuit with ohmmeter or power supply with ammeter + voltmeter with correct symbols and positioning (1)

- Method of heating shown (1)

- Method of recording temperature shown (1)

Linear [or approximately linear] graph with positive gradient (1) and positive intercept on R axis (1).

Conducting / delocalised / free electrons (1) collide (1) with metal lattice / atoms / ions (1) [not with other free electrons] The greater the temperature the greater the vibrational energy of the lattice / metal ions (1) producing a greater chance [or rate] of collisions/ collisions more often / greater frequency of collisions (1) [not harder].

Question 2 total

 \&

3

2

3

2

[10]
\end{tabular}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 3 \& (a) \& (i)
(ii) \& \begin{tabular}{l}
Rate of change of velocity or \(\frac{v-u}{t}\) or change in velocity / time taken (\(u=0\)) (1) [or by impl.] \\
Acceleration \(=\frac{6.0}{0.8}=7.5 \mathrm{~m} \mathrm{~s}^{-2}(1)\) UNIT mark \\
After release there are no [horizontal] forces acting [on the trolley] (1) so it travels with constant speed [to the left] (1). When Nigel catches it there is a force on the trolley to the right / towards Nigel (1) which causes the trolley to decelerate/ slow down/ stop moving [to rest] (1) \\
Question 3 total
\end{tabular} \& 1
2
2

4
$[7]$

\hline 4 \& (a)
(b)

(c) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(iv)

(v)

 \&

Any sensible answer, e.g. [k.e. in] water turbulence, [work against] friction in turbines, drag/friction between water and pipes not just heat or sound or refilling the high level reservoir.

Question 4 Total

 \&

2

3

1

1

2

1

1

[11]
\end{tabular}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline 5 \& (a)
(b) \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii) \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Electron \\
Negative charges repelled [by rod] (1) and move from A to B/ to the right (1) leaving A with a net positive charge (1) \\
Diagram with A shown as positive and \(B\) as negative (1) and the charges shown on the sides of the sphere which are nearly touching.(1)
\[
\begin{aligned}
\& {\left[1.6 \times 10^{-19} \times 300 \times 10^{9}=\right] 4.8 \times 10^{-8} \mathrm{C} \text { UNIT mark }} \\
\& I=\frac{4.8 \times 10^{-8}}{20 \times 10^{-12}}(1)=2.4 \times 10^{3}[\mathrm{~A}](1) \text { allow e.c.f from }(\mathrm{b})(\mathrm{i})
\end{aligned}
\] \\
Question 5 Total
\end{tabular} \& \begin{tabular}{l}
1 \\
3 \\
2 \\
1 \\
2 \\
[9]
\end{tabular} \\
\hline 6 \& (a)
(b)
(c)

(d) \& (i)
(ii)
(i)
(ii)
(i)
(ii)
(i)

(ii) \& | $\begin{aligned} & \frac{[\text { Total }] \text { distance }}{\text { time }} \text { not rate of change of distance } \\ & \frac{\text { displacement }}{\text { time }} \text { not rate of change of displacement } \\ & \frac{6.0}{25}=0.24\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \\ & \frac{\sqrt{3.5^{2}+2.5^{2}}(1)}{25}=0.17\left[\mathrm{~m} \mathrm{~s}^{-1}\right](1) \end{aligned}$ |
| :--- |
| $E=I V t$ used [i.e. relevant numbers substituted] (1) |
| Energy stored $=2.5 \times(60 \times 60)$ or $1.25 \times 2 \times(60 \times 60)(1) \times 15.0$ i.e. conversion to seconds |
| $E=1.35 \times 10^{5}[\mathrm{~J}]$ or 37.5 Watt hours (1) Watt hours unit needed $\frac{1.35 \times 10^{5}}{30}(1)=4.5 \times 10^{3} \mathrm{~s}[=11 / 4 \text { hour }] \text { (1) allow e.c.f. from (c)(i) }$ $\text { Power }=\frac{\text { Work [or energy] }}{\text { time }}=\frac{F \times d}{t}$ |
| Identification of work as $F \times d$ in context of power equation (1) Identification of velocity as d / t (1) |
| $9=F \times 0.24$ (1) [or by impl. - use of $0.24 \mathrm{~m} \mathrm{~s}^{-1}$, i.e. identification of relevant v] allow e.c.f. from (b)(i) $F=37.5[\mathrm{~N}](1)$ |
| Question 6 Total | \& 1

1

1
1
1
2

3
3
2
2
2
2
[14]

\hline
\end{tabular}

Question			Marking details	Marks Available
7	(a)		Relevant pairs of values chosen (1) [e.g. $10 \mathrm{~m} \mathrm{~s}^{-1} \rightarrow 8 \mathrm{~m}$ and $20 \mathrm{~m} \mathrm{~s}^{-1} \rightarrow 32 \mathrm{~m}$] Method / strategy, e.g compare $\frac{\text { distance }}{\text { speed }^{2}}$ for the pairs of values. (1) Conclusion clearly linked to calculation (1) Allow e.c.f for values of pairs if marking points 2 and 3 completed correctly.	3
	(b)	(i) (ii)	Identification of relevant equation: e.g. $v^{2}=u^{2}+2 a x$ (1) Identification of $\mathrm{x}=18 \mathrm{~m}$ (1) deceleration $=6.3\left[\mathrm{~m} \mathrm{~s}^{-2}\right]$ or $\mathrm{a}=-6.3\left[\mathrm{~m} \mathrm{~s}^{-2}\right](1)$ $F=800 \times 6.3=5000[\mathrm{~N}]$ allow e.c.f. from (b)(i)	$\begin{aligned} & 3 \\ & 1 \end{aligned}$
	(c)		Reaction time is independent of speed / doesn't change (1) Then $v \propto d[$ from $d=v t]$ (1)	2
	(d)	(i) (ii)	$21+72=93[\mathrm{~m}]$ No change to thinking distance (1) [Reduced acc/deceleration would] increase braking distance (1)	2
	(e)		$\begin{aligned} & \text { Time required }=\frac{\text { total distance }}{\text { speed }}=\frac{10}{50}[=0.2 \text { hour }](1) \\ & \text { Time for first } 6.0 \mathrm{~km}=\frac{6.0}{80}[=0.075 \text { hour }](1) \\ & \text { remaining time }=0.2-0.075=0.125 \text { hour }(1) \\ & \text { Speed for remaining } 4 \mathrm{~km}=\frac{4}{0.125}=32[\mathrm{~km} / \mathrm{h}] \text { or } 8.9\left[\mathrm{~m} \mathrm{~s}^{-1}\right](1) \end{aligned}$	4
			Question 7 Total	[16]

